

Lessons learned from "Car Hacking" for fun and science

Sasan Jafarnejad

Sasan.jafarnejad@uni.lu vehicularlab.uni.lu

What? Car Hacking?

Jeep

http://goo.gl/5vlMjA

http://goo.gl/ZVyKw2

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

Potential Target Systems

Motivation

- Car theft [1]
- Electronic Tuning
- Sabotage
- Privacy breach [2]
- Fun!!!
- Research

[1] http://goo.gl/9ibxq7

[2] Stephen Checkoway et al. "Comprehensive experimental analyses of automotive attack surfaces." In USENIX Security Symposium, 2011.

Stakeholders

R. R. Brooks, S. Sander, J. Deng, and J. Taiber, "Automobile security concerns," *IEEE Vehicular Technology Magazine*, vol. 4, no. 2, pp. 52–64, Jun. 2009.

- 1. Evaluate and discover security vulnerabilities
- 2. Demonstrate the vulnerabilities

Approach

- Attacks on CAN bus
- Through OBD-II port

Sasan Jafarnejad

Renault Twizy

SNT securityandtrust.lu

- All electric car
- No door locks or windows
- Employs SEVCON GEN4 as motor controller
- Uses CANopen as higher layer protocol

Experimental Setup

Reconfiguration

In SEVCON Gen4 some entries require authentication

5 2 3 1 4

Authentication needs a 2-bytes long passcode

0x85F9	0xC5FD	0xF0A4
0x85FA	0xC5FE	0xF0A5
0x85FB	0xC5FF	0xF0A6
0x85FC	0xC600	0xF0A7
0x85FD	0xC601	0xF0A8
0x85FE	0xC602	0xF0A9
0x85FF	0xC603	0xF0AA
0x8600	0xC604	0xF0AB
0x8601	0xC605	0xF0AC
0x8602	0xC606	0xF0AD
0x8603	0xC607	0xF0AE

Sasan Jafarnejad

Start point

When Connectivity meets Vulnerability" IEEE GLOBECOM'15 - Wi-UAV Workshop

- Control throttle [1]
- Motor direction
- Limit the speed

2

• Disable throttle and etc.

[1] S. Jafarnejad, L. Codeca, W. Bronzi, R. Frank, T. Engel, "A Car Hacking Experiment:

End point

Remote Control

2.1

Attack Scenarios for Twizy

- Forcing the car to go forward or backward.
- Limiting the speed.
- Setting unsafe motor and voltage parameters.
- Randomly changing motor direction.
- Randomly change the conversion map.

Attacks can be triggered by:

Demo Video

Toyota Prius

Based on a work by Miller and Valasek [1]

- Full hybrid electric
- Electronic controls
- Cyber-Physical Systems:
 - Lane Keep Assist, Intelligent Park Assist
 - Pre Collision System, Adaptive Cruise Control

[1] Charlie Miller and Chris Valasek. Adventures in automotive networks and control units. In DEF CON 21 Hacking Conference. Las Vegas, NV: DEF CON, 2013.

Sasan Jafarnejad

Experimental Setup

Normal CAN Packets

• Are periodically sent over network

 $ID_{High} ID_{Low}$ Length Data

• Mostly have checksum in Data[Length-1]

Checksum = $(ID_{High} + ID_{Low} + Length + \sum_{i=0}^{Length-2} Data[i]) \mod 256$

• Example Packet: Speed

ID: 00B4, Length: 8, Data: 00 00 00 00 <mark>91 07 94</mark> E8

- 0x<mark>91</mark> is sequence number 00-FF
- 0x<mark>0794</mark> is the speed times 100 in kph
- Ox<mark>E8</mark> is the checksum

Replay Basics

Diagnostics CAN Packets

- Typically sent only by diagnostic tools
- Needs Toyota TechStream and Pass-Through cable
 - Sniff and Analyze the communications
- Instead we used information from Miller and Valasek [1]

[1] Charlie Miller and Chris Valasek. Adventures in automotive networks and control units. In DEF CON 21 Hacking Conference. Las Vegas, NV: DEF CON, 2013.

Findings

Normal Packets

- Braking
 - -By forging ACC packets
- Steering
 - Using IPAS
 - Using LKA but very limited
- False speed indicator
- False gear indicator

Diagnostics Packets

- Doors and Trunk
 –Lock/Unlock
- Fuel Gauge
- A/C Fan
- Seat belt Tightening

- No safe way for testing
- No access to internal wiring
- Serious error messages
- Frames have **checksum**
- Frames have **pre-conditions**:
 - Steering requires false speed and gear state
 - Although **brake** using ACC worked, **acceleration** did not

Attack Scenarios

Assuming attaching a device such as OVMS

- Manipulating the instrument panel
- Producing errors on CAN bus disables Hybrid Synergy Drive
- Brake abruptly on high speeds
- Steering at high speeds
- Continuously braking does not let the car move

Attacks can be triggered by:

Demo Video

Suggestions

Renault Twizy

- Anti brute-force mechanism
- Distinct passcode for each device
- Prevent unsafe reconfiguration
- Provide door locks and windows!

Toyota Prius

- Respect sequence numbers better
- Detect added packets

Discussion

	Problems	Solutions
•	Glue codes [1]	• Respect current standards and
•	Deviations from standards [1]	guidelines
•	Lack of security standards	• Integrating security considerations
•	Cost limitations	into standards such as ISO-26262
•	Vehicle lifetime	• Legislations
		• IDS for cars

[1] Stephen Checkoway et al. "Comprehensive experimental analyses of automotive attack surfaces." In USENIX Security Symposium, 2011.

If your car has any Cyber-Physical Systems you may need to be worried!

Current Research

Privacy aware driver profiling

- Efficient detect of risky maneuvers based on vehicle data and contextual information.
- Prevent information leakage while preserving data utility.

Questions?

sasan.jafarnejad@uni.lu vehicularlab.uni.lu

Experimental Setup

OVMS

Open Vehicles Monitoring System

